
Compact preference representation in stable marriage
problems

E. Pilotto1, F. Rossi1, K. B. Venable1, T. Walsh2

1 Department of Pure and Applied Mathematics, University of Padova, Italy
Email:{epilotto,frossi,kvenable}@math.unipd.it

2 NICTA and UNSW Sydney, Australia
Email: Toby.Walsh@nicta.com.au

Abstract. The stable marriage problem has many practical applications in two-
sided markets like those that assign doctors to hospitals, students to schools, or
buyers to vendors. Most algorithms to find stable marriages assume that the par-
ticipants explicitly expresses a preference ordering. This can be problematic when
the number of options is large or has a combinatorial structure. We consider there-
fore using CP-nets, a compact preference formalism in stable marriage problems.
We study the impact of this formalism on the computational complexity of sta-
ble marriage procedures, as well as on the properties of the solutions computed
by these procedures. We show that it is possible to model preferences compactly
without significantly increasing the complexity of stable marriage procedures and
whilst maintaining the desirable properties of the matching returned.

1 Introduction

The stable marriage problem is a well-known problem with many practical applications.
It is usually defined as the problem of matching men to women sothat no man and
woman, who are not married to each other, both prefer each other to their current partner
[6]. Problems of this kind arise in many real-life situations, such as assigning residents
to hospitals, students to schools, as well as in two-sided market trading. A specific
application is a web-based stable marriage system for matching sailors to ships in the
US Navy.

Surprisingly, a stable matching always exists whatever preferences are held by the
men and women. The Gale-Shapley algorithm finds a stable matching in polynomial
time [4]. The matching computed is male-optimal since the men have the best possi-
ble partners. Since this might be considered unfair to the women, many other stable
marriage algorithms have been developed. For example, Gusfield gives a polynomial
algorithm to compute the stable matching where the regret ofthe most unsatisfied per-
son is minimal [5]. We will focus on these two algorithms since they contain the main
features of many other stable marriage algorithms.

Both algorithms assume that agents express their preferences (over the members of
the other gender) explicitly as a totally ordered list of members of the other gender. In
some applications, the number of men and women can be large. It may therefore be un-
reasonable to assume that each man and woman provides a strict ordering of the other

gender. In addition, eliciting their preferences may be a costly and time-consuming pro-
cess. The sets of men and women may have a combinatorial structure. It could therefore
be costly to give preference over all options.

For instance, consider a large set of hospitals offering residencies. Doctors might
not want to rank explicitly all the hospitals, but might wishto express preferences over
features. For example, they might say ”I prefer a position close to my home town”, or
”If the hospital is far away from my home town, then I want a better salary”. Based on
this information, we can rank the hospitals.

Our challenge is to adapt algorithms to find stable marriagesto work with such pref-
erence statements. We will investigate whether this changes the computational complex-
ity of stable marriage algorithms like Gale-Shapley’s and Gusfield’s as well as proper-
ties of the matchings computed.

To model preferences compactly, we will use (acyclic) CP-nets [1]. These let agents
state their preferences simply and naturally by means of qualitative conditional state-
ments. We will show how to use the preferences orderings induced by CP-nets within
GS and Gusfield’s algorithms with little additional computational cost. This claim is
supported by both theoretical and experimental studies.

2 Background

2.1 CP-nets

CP-nets [1] are a graphical model for compactly representing conditional and qualitative
preference relations. CP-nets are sets ofceteris paribus (cp)preference statements. For
instance, the statement“I prefer red wine to white wine if meat is served”asserts that,
given two meals that differonly in the kind of wine servedandboth containing meat,
the meal with red wine is preferable to one with white wine.

A CP-net has a set of features (also called variables)F = {x1, . . . , xn} with finite
domainsD(x1), . . . ,D(xn). For each featurexi, we are given a set ofparentfeatures
Pa(xi) that can affect the preferences over the values ofxi. This defines adependency
graph in which each nodexi hasPa(xi) as its immediate predecessors. Given this
structural information, the agent explicitly specifies herpreference over the values of
xi for each complete assignmenton Pa(xi). This is by means of a total order over
D(xi). An acyclicCP-net is one in which the dependency graph is acyclic.

Consider a CP-net whose features areA, B, C, andD, with binary domains con-
taining f and f if F is the name of the feature, and with the following preference
statements:a ≻ a, b ≻ b, (a ∧ b) ∨ (a ∧ b) : c ≻ c, (a ∧ b) ∨ (a ∧ b) : c ≻ c, c : d ≻ d,
c : d ≻ d. Here,a ≻ a represents the unconditional preference forA = a overA = a,
while c : d ≻ d states thatD = d is preferred toD = d given thatC = c.

The semantics of CP-nets depends on the notion of aworsening flip. This is a change
in the value of a feature to a less preferred value according to the preference statement
for that feature. For example, in the CP-net above, passing from abcd to abcd is a
worsening flip sincec is better thanc givena andb.

A solution (also called outcome) of a CP-net is an assignmentto all its variables
of values from their domains. One solutionα is betterthan another solutionβ (written

α ≻ β) iff there is a chain of worsening flips fromα to β. This definition induces in
general a preorder over the solutions. If the CP-net is acyclic, the solution ordering is a
partial order with only one top element.

In general, finding the optimal solution of a CP-net is NP-hard. However, in acyclic
CP-nets, the unique optimal solution can be found in linear time. We simply sweep
through the dependency graph assigning each variable to theits most preferred value.
For instance, in the CP-net above, we would chooseA = a andB = b, thenC = c,
and thenD = d.

Determining if one solution is better than another (called adominance query) is NP-
hard even for acyclic CP-nets. Whilst tractable special cases exist, there are also acyclic
CP-nets in which there are exponentially long chains of worsening flips between two
solutions.

2.2 Stable marriage problems

The stable marriage problem(SMP) is the problem of finding a matching between
the elements of two sets. Usually, the members of the two setsare called men and
women. More precisely, givenn men andn women, where each person strictly orders
all members of the opposite sex, we wish to marry the men to thewomen such that there
is not a man and woman who would both rather be married to each other than to their
current partners. If there is no such couple, the matching iscalledstable. We will write
pref(x) for the preference ordering of man or womanx.

TheGale-Shapley algorithm(GS) [4] is a well-known algorithm to solve the SMP
problem:

Algorithm 1 : GS
Set all men and women as free
while there is a free manm do

w ← the first woman inpref(m) to which he has not yet proposed
if w is freethen

matchm with w

if m >pref(w) z, wherez is w’s current partnerthen
matchm with w and setz free

else
w rejectsm andm remains free

This algorithm consists of a number of rounds in which each un-engaged man pro-
poses to the most preferred woman to whom he has not yet proposed. Each woman
receiving a proposal becomes “engaged”, provisionally accepting the proposal from
her most preferred man. In subsequent rounds, an already engaged woman can “trade
up”, becoming engaged to a more preferred man and rejecting aprevious proposal, or
if she prefers him, she can stick with her current partner. The algorithm takesO(n2)
steps and construct a matching that ismale-optimal, since every man is paired with his

highest ranked feasible partner, andfemale-pessimal, since each woman is paired with
her lowest ranked feasible partner.

Considern = 3. Let W = {w1, w2, w3} andM = {m1, m2, m3} be respectively
the set of women and men. The following sequence of strict total orders defines an
SMP:

– m1 : w1 > w2 > w3 (i.e., manm1 prefers womanw1 to w2 to w3); m2 : w2 >

w1 > w3; m3 : w3 > w2 > w1

– w1 : m1 > m2 > m3; w2 : m3 > m1 > m2; w3 : m2 > m1 > m3

For this SMP, the Gale-Shapley algorithm returns the male-optimal marriage{(m1, w1),
(m2, w2), (m3, w3)}. On the other hand, the female-optimal marriage is{(w1, m1),
(w2, m3), (w3, m2)}.

Male-optimality might be considered unfair to the women. Other proposal-based
algorithms to compute stable matchings have been proposed that might be considered
fairer. For example, Gusfield gives an algorithm to compute the minimum-regret stable
matching [5]. This is the best stable matching as measured bythe person who has the
largest regret in it. The regret of a man in a matching is the number of women that are
more preferred than its current partner. The regret of a woman is defined analogously.
Gusfield’s algorithm passes from one matching to another. Ineach step, the person with
the maximum regret is identified, and their current marriageis broken to pass to another
matching with a smaller maximum regret.

3 Operations Opt, Next, and Compare in the SMP algorithms

In algorithms such as GS and Gusfield’s, men make proposals, starting from their most
preferred woman and going down in their ordering, whilst women receive proposals and
compare these against the men to whom they are currently engaged. Moreover, in both
algorithms, proposals are made in increasing order of regret. This is especially exploited
by Gusfield’s algorithm, where the notion of regret is also used to decide how to modify
the current matching in order to obtain one with a smaller regret. Three operations are
thus needed by both algorithms:

– Opt(pref(m)): Given a manm, we compute his optimal woman. This is needed
the first time a man makes a proposal.

– Next(pref(m), w): Given a manm and a womanw, we compute the next best
woman form. This is needed when a man makes a new proposal.

– Compare(pref(w), m1, m2): Given a womanw and two menm1 andm2, we
decide ifm2 is preferred tom1 for w. This is needed when a woman compares two
proposals to decide whether to remain with the current man (m1) or to leave him
for a new man who is proposing (m2).

OperationsOpt and Next return a woman, whileCompare returns a Boolean
value.

If preferences are given explicitly as strict total orders,as in the traditional SMP
setting, these operations all take constant time. However,if preferences are represented

with a compact representation language such as CP-nets, then this is not the case. Thus,
to understand the impact of using a compact preference formalisms within algorithms
like GS, we consider the computational complexity of these operations on CP-nets.

4 Opt, Next, and Compare on CP-nets

We consider a stable marriage problem withn men and women, where each man and
each woman specifies their preferences over the other sex viaa CP-net. We call this a
Compact SMP (CSMP).pref(m) is now the solution ordering induced by a CP-net,
which can be a partial ordering.

For simplicity, we will consider CP-nets with two values in each domain. However,
the results can be easily generalized to non-binary domains. Each man and woman is
described by a set of Boolean features, andn is the size of the Cartesian product of
such domains. Thus the number of featuresf of each CP-net islog(n). Conversely,
if we are given a set off features, we assume that each assignment to such features
corresponds to a man (resp. a woman). We could, however, relax this assumption by
using a constrained CP-net to rule out infeasible combinations.

Let us consider the three operations used within the SMP algorithms. In general,
finding the optimal solution of a CP-net is a computationallydifficult problem, as is
dominance testing (the problem of comparing two solutions in the CP-net ordering) [1].
We are not aware of any study of the complexity of finding the next best solution. How-
ever, as two of the three operations are computationally intractable in general, and as we
wish to find settings where such operations take just polynomial time, we turn our at-
tention to acyclic CP-nets. These are more restrictive but may be sufficiently expressive
in many contexts [1].

As mentioned before, in acyclic CP-nets there is always one optimal solution, and
it can be found in linear time in the number of featuresf by a simple forward sweep
algorithm. OperationOpt thus takesO(f) time.

While the solution ordering of an acyclic CP-net may be partial, operationsNext

andCompare need a total order, sinceNext returns one new proposal to be made, and
Compare chooses between two proposals. Therefore, we will considerlinearizations
of the CP-net solution ordering.

This does not contradict a user’s preference statements, since a linearization only
orders pairs of elements that were incomparable. Notice also that, even if we could
work with partial orders, dominance testing (and thusCompare(pref(w), m1, m2))
is intractable in general for an acyclic CP-net. Here, on theother hand, we aim to find
linearizations where all three operations are tractable.

We will focus on those linearizations where the regret is larger as we descend the
order. As noted before, our stable marriage algorithms makeproposals in this order.

5 A linearization of the CP-net solution ordering

Linearizations of the solution ordering of acyclic CP-netshave been considered in [2,
3]. A consequence of these results is that, given a feature order which is compatible

with their topological order in the dependency graph, any lexicographical ordering over
the solutions is a linearization of the original partial ordering. Computing Next in such
a linearization is polynomial since it simply requires the next tuple of feature values
in the lexicographic ordering. Also the Compare operation is polynomial since it re-
duces to a comparison of tuples over the lexicographical relation. Unfortunately, such
linearizations do not in general satisfy the regret condition. We therefore consider a dif-
ferent linearization, where the Next and Compare operations are polynomial, and where
solutions closer to the top of the partial order (that is, with a smaller regret) come first.

We recall that the regret of a man is the distance between his partner in the current
marriage and his most preferred woman. This notion has been originally defined over
total orders [6]. However, it can be generalized to be used onpartial orders. More pre-
cisely, the regret of a manm when married to a womanw is the longest path, in the
preference ordering ofm, betweenw and the top element of his ordering.

For example, let us consider the CP-net, as well as its induced solution ordering,
shown in Figure 1 (wherēx is written as−x for all valuesx). This CP-net has three
featuresA, B, andC, whereB depends onA. The regret of̄abc is 3 since there are at
most 2 solutions between the top and this one.

While pref(m) is the preference ordering induced by the CP-net ofm, we will call
lex-pref(m)our linearization ofpref(m).

This linearization is based on a lexicographical order overfeature levels. Given an
acyclic CP-net, we divide its features into levels, each containing all the features that
have the same longest path length to a feature without outgoing edges in the dependency
graph. For example, in the CP-net of Figure 1, we have two levels: level 2, containing
only A and corresponding to a longest path of length 1, and level 1, containingB and
C, corresponding to a longest path of length 0.

−a: −b > b
a: b > −b

A

B C

a > −a

c > −c

abc

ab−c

−a−b−c

−ab−c

a−bc

−a−bc

−abc

a−b−c

1

2 3

4 5

6 7

8

Fig. 1. A CP-net and its induced solution ordering.

Given a solution, we then associate to it a vectorv of length equal to the number of
levels, sayk, whose elementsv1, . . . , vk, corresponding to levelsk to 1, are Boolean
vectors of length equal to the number of features in each level. Features are ordered
within each level in some fixed order.

For the previous example, we have a vector with two elements (since we have two
feature levels), where the first one has one Boolean value (corresponding to the value
for A), and the second one is a two-element Boolean vector (corresponding to the values

for B andC). The Boolean values in the vectors are set according to the values of the
features: given the values of the parents, if the value of theconsidered variable is the
most preferred, we put 0, otherwise 1.

Consider again the CP-net in Figure 1. The solutionab̄c̄ gives the vector[0, 11],
sincea is the most preferred value in the CP-table of featureA, while, givenA = a,
both b̄ andc̄ are the least preferred values in the CP-tables of featuresB andC.

Given any two such vectors, sayv = [v1, . . . , vk] andv′ = [v′1, . . . , v
′

k], we now
define how to order them. Let us denote bysum(x) the sum of all elements in vector
x. Thenv <lex−pref v′ (that is,v precedesv′ in the ordering and is more preferred) iff
[sum(v1), . . . , sum(vk)] is lexicographically smaller than[sum(v′1), . . . , sum(v′k)], or
[sum(v1), . . . , sum(vk)] = [sum(v′1), . . . , sum(v′k)] and[v1, . . . , vk] is lexicographi-
cally smaller than[v′1, . . . , v

′

k].
For example, vector[00, 01] is preferred to vector[00, 10], since the vectors of

the sums are equal ([0, 1]) and[00, 01] is lexicographically smaller than[00, 10]. Also,
[00, 01] is preferred to[00, 11], and[10, 00] is preferred to[01, 01].

In Figure 1, the linearization of the ordering is shown via the numbers above each
solution. As the following theorem shows, this is a linearization of the solution ordering
induced by the CP-net.

Theorem 1. Given a CP-net and two solutionss ands′, with associated vectorsv and
v′, if s ≻ s′, thenv <lex−pref v′.

Proof. The vectors of the sums represents the number of violations in each level of the
CP-net. Ifs′ has a larger number of violations in higher levels of the CP-net with respect
to s (thuss′ is less preferred thans), the vector of the sums ofv′ will be larger than the
one ofv. Notice also that solutions which are incomparable in the CP-net ordering are
strictly ordered in our linearization.2

6 Complexity of Opt, Next, and Compare, and regret condition

Since we have linearized a partial order with one top element,Opt(pref(m)) = Opt(lex-
pref(m)). Therefore, findingOpt(lex-pref(m)) is polynomial since we can use the sweep
forward algorithm to findOpt(pref(m)) in acyclic CP-nets.

We will now consider the complexity of the operationsNext andCompare on this
linearization.

For operationCompare(lex-pref(w),m1,m2), we can directly use the definition of
<lex−pref given above:Compare(lex-pref(w),m1,m2) = true iff v(m2) <lex−pref

v(m2), wherev(mi) is the vector associated tomi in the CP-netpref(w).

Theorem 2. Given a CSMP of sizen, a womanw and two menm1 andm2, Compare(
lex-pref(w), m1, m2) can be computed inO(f), wheref is the number of features of
the CP-net ofw.

Proof. The vectors associated to each of the two men can be computed in linear time
in the number of features of the CP-net: for each feature, we check the position of
the feature value in a row of the appropriate CP-table. Giventhe two vectors, we need

to compute the vectors of their sums, which is linear in the number of features, and to
compare them (and possibly also the original vectors) lexicographically. This takes time
linear in the number of features.2

For operationNext(lex-pref(m), w), given a vector, we need to find the next vec-
tor in the<lex−pref ordering. This can be done by following a procedure similar to
incrementing a Boolean counter.

Given a vectorv = [v1, . . . , vk], we build a new vectorv′ as follows. Forj from k

to 1, we compute the firstj such thatsum(vj) = sum(next-lex(vj)), wherenext-lexis
just the next element in a standard lexicographical order. If such aj exists, thenv′ =
[v1, . . . ,next-lex(vj), v

′

j+1, . . . , v
′

k], wherev′h with h > j is the minimum vector with
sum equal tosum(vh). Otherwise, we computenext-lex([sum(v1), . . . , sum(vk)]),
and setv′ as the smallest vector with these sums.

For example, consider solutionab̄c̄ for the CP-net in Figure 1. The corresponding
vector is[0, 11]. There is no way to increase lexicographically either11 or0 while main-
taining the same sums, so we must consider the sum vector[0, 2], increment it to[1, 0],
and then build vector[1, 00], which corresponds to solution̄ab̄c. If instead we consider
solutionabc̄, whose vector is[0, 01], we can modify01 into 10 while maintaining the
same sums, so we get vector[0, 10], corresponding to solutionab̄c.

Algorithm 2 : Next

Input : acyclic CP-netN of manm, vectorv = [v1, . . . , vk],
Output : vectorv′, successor ofv in <lex−pref(m)

v′ ← v

i← k

while i > 1 andv′

i = LEX NEXT (v′

i) do
i← i− 1

if i ≥ 1 then
v′[i]← LEX NEXT (v′

i)
RESET ALL SUCC(v′, i)
returnv′

else
P ← SUM NEXT ([sum(v′

1), ..., sum(v′

k)])
if P = nil then

return “No more solutions”
returnSUM MIN(P)

In Algorithm 2, procedureLEX NEXT takes as input a vectorv′i and returns the
lexicographical successor ofv′i that has the same sum, if it exists, andv′i itself otherwise.
ProcedureRESET ALL SUCC, given a vectorv′ and an indexi, resets the sub-vector
with componentsv′j , with indexj ≥ i, to the minimal lexicographic Boolean vector
with sum equal tosum(v′j), j ≥ i. ProcedureSUM NEXT computes the lexicographic
successor of a vector of sums taking into account the maximumcost sum of each level.
If no such successor exists, it returnsnil. Finally, procedureSUM MIN computes the
lexicographical minimal vector having the sum vector givenin input.

Theorem 3. Given a CSMP of sizen, a womanw and a manm with a CP-net withf
features, Algorithm 2 computesNext(lex-pref(m), w) in O(f) time.

Proof. Computing the next vector in a lexicographical order, computing the sum of the
vector, and computing the minimum vector with the same sum are all tasks that can be
done in time linear in the size of the vector. Thus the above algorithms can run in time
linear in the size of the vector associated to womanw, which is the number of features
of the CP-net of manm. 2

We have shown that all the three operations (Opt, Next, and Compare) can be com-
puted in polynomial time on our linearization of the CP-net ordering. We now show that
this linearization also has the property that later elements have a larger regret.

Theorem 4. Given a CP-net of a manm, and two womenw1 andw2, if s′ <lex−pref s,
then the regret ofm when married withw1 is smaller than or equal to his regret when
married tow2.

7 Properties of the generated stable marriage: stability,
male-optimality, and minimum regret

7.1 Stability

If we run the GS algorithm on the linearization just defined, by definition we obtain
a matching which is stable w.r.t. this linearization. However, one may wonder if the
generated matching is stable w.r.t. the partial order of theCP-net.

As is standard in SMPs with ties [6], also in our case, where the orders induced by
the CP-nets may be partial, we define a matching to be stable when there is no man and
woman whostrictly prefereach other to their partner in the matching.

Since our linearization orders more pairs than the partial order of the CP-net, it is
easy to see that any matching which is stable for the linearization is also stable for the
partial order. In fact, if there is a blocking pair (that is, aman and a woman who would
prefer to be together rather than with their current partners) in the partial order, such a
pair will be blocking also according to the linearization. Therefore stability is assured,
both w.r.t. the linearization and w.r.t. the original CP-net solution ordering.

7.2 Male-optimality

The matching found by the GS algorithm on the linearization will of course be male-
optimal w.r.t. the linearization. However, it may be not male-optimal w.r.t. the original
partial order.

In the presence of partial orders, the definition of male-optimality is the same as for
total orders: a stable marriage is male-optimal if, for eachmanm and partnerw, there
is no stable marriage in whichm is married to another womanw′ which he strictly
prefers tow. Notice that, while a male-optimal matching always exists when we work
with totally ordered preferences, this is not true when we have partial orders.

Even if a male-optimal matching exists, running the GS algorithm on our lineariza-
tion can return a matching which is not male-optimal. Consider the following SMP with

2 men and 2 women, where⊲⊳ means incomparability:m1 : w1 ⊲⊳ w2; m2 : w1 ≺ w2;
w1 : m1 ⊲⊳ m2; w2 : m1 ⊲⊳ m2. Given the linearization where we order incomparable
element in incresing index order, the stable matching obtained by GS on this lineariza-
tion is ((m1, w1), (m2, w2)). However, the only male-optimal matching in the original
problem is((m1, w2), (m2, w1)).

Notice that, when preferences are totally ordered, the output of the GS algorithm is
not affected by the order in which men propose to women. With partial orders, this order
may affect the result, since women leave the current partneronly if the new proposal is
strictly better. For example, in ther SMP above, if manm2 proposes first (tow1), then
the resulting marriage is the male-optimal one (((m1, w2), (m2, w1))).

There is a way to ”do our best” w.r.t. male-optimality, by following the policy that
the next men making a proposal is one of those, if any, with a single next best woman.
If no such man exists, then we can choose any man. If we do this,then it is possible
to show that the generated marriage is never worse w.r.t. male-optimality than the one
obtained by any other policy.

To (partially) implement this policy, we can exploit the fact that only incomparable
women can have the same vectors of sums (see Theorem 1). Therefore, we can identify
a man with a single next best woman by executing twice the Nextoperation and by
comparing the vectors of the sums of the two women obtained. If they are the same,
then the two women are incomparable (thus the man does not have a single next best
woman). On the other hand, if they are different, the two women may be ordered or
incomparable in the partial order. Thus we should choose a man with two different
vectors of the sums. Notice that this is an approximation of the desired policy, since
some incomparable women may have different vectors of the sums. Notice also that the
implementation of the proposal policy does not add to the worst-case cost of the GS
algorithm, since the result of the second Next operation canbe saved for future use.

7.3 Minimum regret

Computing a stable matching which minimizes the regret of the person who is worst-off
may be perceived to be fairer than computing the male-optimal matching. As mentioned
in Section 2, such a stable matching is found by Gusfield’s algorithm. As with GS, our
linearization allows us to use Gusfield’s algorithm with compact preference formalisms.

Theorem 5. Running Gusfield’s algorithm on a CSMP where each CP-net hasf fea-
tures, withOpt to find the first proposal,Next to find the next proposal,Compare to
compare two proposals, andr to compute the regret of a matching, we obtain a stable
matching with minimum regret inO(n2f) time.

Proof. Our linearization respects the ordering induced by the regret and allows to com-
pute the regret efficiently. Notice that this is important inGusfield’s algorithm, since
regret is not only used to establish a proposal order but alsoto identify the person who
is worst-off in the current matching.

Given that Gusfield’s algorithm runs inO(n2) time, and considering the complexity
of Opt, Next, andCompare and that of computingr, it is easy to see that our version
of the algorithm runs inO(n2f) time.2

8 Experimental analysis

Given the linearization described above, we can either pre-compute it and then run GS
as usual over a strict linear order, or we can just compute thepart of the linearization
that GS needs during the execution of the algorithm. In the first scenario, we need to
compute theNext operationn2 times (n times for each man and woman), and then
GS can run in the usualO(n2) time. In terms of space, however, we need to store all
then linearizations, which takesO(n2) space. In the second scenario, there is no pre-
computation burden, but each step of GS requires additionaltime to perform aNext

(and possibly aCompare) operation. Given the theoretical complexity results above,
GS will run inO(n2log(n)) time. The space needed is just to store the CP-nets, and not
the linearization, which is nowO(nlog(n)).

We ran some experiments to see which of these two scenarios ismore effective.
Given a number of featuresf , we randomly generate acyclic CP-nets withf Boolean
features where each feature has at most two parents. For eachfeature, we then generate
a CP-table by making sure that the dependency graph is respected. To generate a whole
CSMP withn = 2f men and women, we generate2n CP-nets withf features each.
The experiments have been performed on an Intel Core Duo 3GHzprocessor with 4GB
RAM, and show the average over 100 instances.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 3 4 5 6 7 8 9 10

Lo
g(

T
im

e)
 (

m
ill

is
ec

on
ds

)

Number of features

"GS1"
"GS+pre-m"

"GS+pre-mw"

Fig. 2.Execution time for three versions of GS.

Figure 2 gives the log-scale time needed to run three different versions of the GS
algorithm: the one with the Next and Compare operation executed on demand (GS1),
the one with the pre-computation of the linearization for the men, and the Compare
operation executed on demand (GS+pre-m), and the one with the pre-computation of
all the linearizations (GS+pre-mw). It is easy to see that itis inefficient to pre-compute
the linearizations, even for just the men.

This is perhaps not too surprising, since computing the linearizations needs to run
the Next operation exactlyn2 (or 2n2) times, while the GS algorithm needsO(n2) time
in the worst case but may in practice require only a much smaller number of proposals.
This is confirmed by Figure 3, where we plot the number of proposals made by the GS1
algorithm as a function of the number of features in the CP-nets. The GS algorithm
usually makes only a small number of proposals. For example,for 10 features, we have
n = 210 = 1024, thusn2 = 1, 048, 576, but the GS algorithm makes less than 16,000
proposals on average.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 3 4 5 6 7 8 9 10

N
um

be
r

of
 p

ro
po

sa
ls

Number of features

"GS"

Fig. 3. Number of proposals made by the GS1 algorithm.

Notice that algorithm GS1 takes very little time even for CP-nets with 10 features
(less than 1 second). This scenario is realistic, since it models problems with about a
thousand members of each sex. In this setting, it might be impractical to ask each agent
to rank all members of the other sex, whilst it is more practical to specify a CP-net over
just 10 features.

9 Conclusions and future work

We have considered using a qualitative compact preference representation, namely CP-
nets, in the context of stable marriage problems. We have shown that the benefits
brought by compactness do not impact greatly on the complexity of computing stable
matchings nor on the properties of the returned matching.

The significance of our study on the complexity of the Next operation on CP-nets
goes beyond its use in SMPs. In fact, such an operation is alsoneeded when computing
the top k solutions, such as in web search, or when an additional solution is looked for.

In the future, we plan to investigate the use of other compactapproaches to prefer-
ences such as soft constraints, as well as to consider other versions of the stable mar-
riage problem (such as with ties). We also plan to see whethertractable cases exists for
operations like Next on classes of soft constraints or constrained CP-nets.

References

1. C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D.Poole. CP-nets: A tool for
representing and reasoning with conditional ceteris paribus preference statements.J. Artif.
Intell. Res. (JAIR), 21:135–191, 2004.

2. Ronen I. Brafman and Yuri Chernyavsky. Planning with goalpreferences and constraints. In
ICAPS, pages 182–191, 2005.

3. Ronen I. Brafman, Carmel Domshlak, and Tanya Kogan. Compact value-function representa-
tions for qualitative preferences. InUAI, pages 51–59. AUAI Press, 2004.

4. D. Gale and L. S. Shapley. College admissions and the stability of marriage. Amer. Math.
Monthly, 69, 1962.

5. D. Gusfield. Three fast algorithms for four problems in stable marriage.SIAM Journal of
Computing, 16(1), 1987.

6. D. Gusfield and R. W. Irving.The Stable Marriage Problem: Structure and Algorithms. MIT
Press, 1989.

